Token-based pricing from OpenAI and Anthropic can quickly become your biggest AI expense. This guide shows you exactly how to implement TOON in your applications to cut those costs by 30-60% without sacrificing functionality.
Understanding the Cost Problem
Current Pricing (2025)
OpenAI:
- GPT-4 Turbo: $0.01/1K input tokens, $0.03/1K output
- GPT-4: $0.03/1K input tokens, $0.06/1K output
- GPT-3.5 Turbo: $0.0005/1K input tokens, $0.0015/1K output
Anthropic Claude:
- Claude 3 Opus: $0.015/1K input tokens, $0.075/1K output
- Claude 3 Sonnet: $0.003/1K input tokens, $0.015/1K output
- Claude 3 Haiku: $0.00025/1K input tokens, $0.00125/1K output
The Token Tax
Every JSON object you send includes:
- Curly braces:
{ } - Quotation marks:
"" - Commas:
, - Colons:
:
These add up fast.
Example:
{
"user": {
"name": "Alice",
"email": "alice@example.com",
"age": 30
}
}
Tokens: ~35 Cost per 1M calls with GPT-4: $1,050
Same data in TOON:
user:
name: Alice
email: alice@example.com
age: 30
Tokens: ~18 Cost per 1M calls with GPT-4: $540 Savings: $510 (49%)
Implementation Strategies
Strategy 1: Boundary Conversion
Convert at the LLM boundary - keep your application logic unchanged.
Architecture:
Your App (JSON) → Converter → TOON → LLM API → Response
OpenAI Implementation
Before (JSON):
const OpenAI = require('openai');
const openai = new OpenAI();
async function analyzeData(data) {
const response = await openai.chat.completions.create({
model: "gpt-4-turbo",
messages: [{
role: "user",
content: JSON.stringify(data)
}]
});
return response.choices[0].message.content;
}
// Usage
const result = await analyzeData({
user: {
name: "Alice",
purchases: [
{ item: "Laptop", price: 1200 },
{ item: "Mouse", price: 25 }
]
}
});
After (with TOON):
const OpenAI = require('openai');
const toon = require('toon-js');
const openai = new OpenAI();
async function analyzeData(data) {
// Convert to TOON before sending
const toonData = toon.stringify(data);
const response = await openai.chat.completions.create({
model: "gpt-4-turbo",
messages: [{
role: "user",
content: toonData
}]
});
return response.choices[0].message.content;
}
// Usage - same as before!
const result = await analyzeData({
user: {
name: "Alice",
purchases: [
{ item: "Laptop", price: 1200 },
{ item: "Mouse", price: 25 }
]
}
});
Token Savings: ~45% Code Changes: Minimal (just conversion line) Application Impact: Zero
Claude Implementation
Before (JSON):
const Anthropic = require('@anthropic-ai/sdk');
const anthropic = new Anthropic();
async function processWithClaude(data) {
const message = await anthropic.messages.create({
model: "claude-3-sonnet-20240229",
max_tokens: 1024,
messages: [{
role: "user",
content: JSON.stringify(data)
}]
});
return message.content[0].text;
}
After (with TOON):
const Anthropic = require('@anthropic-ai/sdk');
const toon = require('toon-js');
const anthropic = new Anthropic();
async function processWithClaude(data) {
// Convert to TOON
const toonData = toon.stringify(data);
const message = await anthropic.messages.create({
model: "claude-3-sonnet-20240229",
max_tokens: 1024,
messages: [{
role: "user",
content: toonData
}]
});
return message.content[0].text;
}
Token Savings: ~50%
Strategy 2: System Prompt Optimization
Tell the LLM to expect TOON format.
Enhanced System Prompt:
const systemPrompt = `You are a helpful assistant.
User data will be provided in TOON format (Token-Oriented Object Notation),
which is similar to YAML but optimized for tokens.
Example TOON format:
key: value
nested:
child: value
array: [1, 2, 3]
Please respond in natural language.`;
const response = await openai.chat.completions.create({
model: "gpt-4-turbo",
messages: [
{ role: "system", content: systemPrompt },
{ role: "user", content: toonData }
]
});
Benefits:
- LLM understands TOON format
- Better context understanding
- Clearer responses
Strategy 3: Batch Processing
Process multiple items in one request using TOON's efficiency.
Example:
async function batchAnalyze(items) {
// Create TOON batch
const batchData = toon.stringify({ items });
const response = await openai.chat.completions.create({
model: "gpt-4-turbo",
messages: [{
role: "user",
content: `Analyze each item:\n${batchData}`
}]
});
return response.choices[0].message.content;
}
// Process 100 items at once instead of 100 separate calls
const items = [/* 100 user objects */];
const results = await batchAnalyze(items);
Savings:
- Fewer API calls
- Reduced per-request overhead
- More data per context window
Real-World Use Cases
Use Case 1: E-commerce Product Analysis
Scenario: Analyze product reviews and generate insights
Before (JSON):
const productData = {
productId: "12345",
reviews: [
{
rating: 5,
comment: "Great product!",
date: "2025-01-15"
},
{
rating: 4,
comment: "Good value",
date: "2025-01-14"
}
// ... 98 more reviews
]
};
const analysis = await openai.chat.completions.create({
model: "gpt-4-turbo",
messages: [{
role: "user",
content: `Analyze these reviews: ${JSON.stringify(productData)}`
}]
});
Tokens: ~2,500 Cost per request: $0.025
After (TOON):
const toonData = toon.stringify(productData);
const analysis = await openai.chat.completions.create({
model: "gpt-4-turbo",
messages: [{
role: "user",
content: `Analyze these reviews:\n${toonData}`
}]
});
Tokens: ~1,250 (50% reduction) Cost per request: $0.0125 Monthly Savings (1,000 products): $12.50
Use Case 2: Customer Support Chatbot
Scenario: Provide context from user history
Implementation:
async function getChatResponse(userMessage, userContext) {
// Convert context to TOON
const contextTOON = toon.stringify({
user: userContext.profile,
recentOrders: userContext.orders.slice(0, 5),
supportHistory: userContext.tickets.slice(0, 3)
});
const response = await openai.chat.completions.create({
model: "gpt-3.5-turbo",
messages: [
{
role: "system",
content: "You are a customer support assistant."
},
{
role: "system",
content: `User context:\n${contextTOON}`
},
{
role: "user",
content: userMessage
}
]
});
return response.choices[0].message.content;
}
Before (JSON): ~600 tokens of context After (TOON): ~300 tokens of context Per conversation savings: 50% Monthly savings (10,000 conversations): $150
Use Case 3: Document Summarization
Scenario: Summarize structured documents with Claude
Implementation:
async function summarizeDocument(document) {
const documentTOON = toon.stringify({
metadata: document.metadata,
sections: document.sections,
references: document.references
});
const message = await anthropic.messages.create({
model: "claude-3-sonnet-20240229",
max_tokens: 500,
messages: [{
role: "user",
content: `Summarize this document:\n${documentTOON}`
}]
});
return message.content[0].text;
}
Token Reduction: ~55% Cost Reduction: ~55% Monthly Savings (500 documents): $82.50
Use Case 4: Data Analysis Pipeline
Scenario: Process analytics data through GPT-4
Implementation:
async function analyzeMetrics(metricsData) {
const metricsTOON = toon.stringify({
period: metricsData.period,
metrics: {
revenue: metricsData.revenue,
users: metricsData.users,
engagement: metricsData.engagement
},
comparisons: metricsData.previousPeriod
});
const analysis = await openai.chat.completions.create({
model: "gpt-4-turbo",
messages: [{
role: "user",
content: `Analyze these metrics and provide insights:\n${metricsTOON}`
}],
temperature: 0.3
});
return analysis.choices[0].message.content;
}
Before: ~1,800 tokens After: ~900 tokens Savings per analysis: $0.027 Monthly Savings (daily reports): $24.30
Advanced Optimization Techniques
1. Selective TOON Conversion
Not all data needs TOON. Identify high-volume, structured data.
function optimizeForLLM(data) {
// Convert structured data to TOON
if (isStructuredData(data)) {
return toon.stringify(data);
}
// Keep natural text as-is
return data;
}
2. Caching with TOON
Cache TOON conversions to avoid repeated processing.
const toonCache = new Map();
function getCachedTOON(key, data) {
if (!toonCache.has(key)) {
toonCache.set(key, toon.stringify(data));
}
return toonCache.get(key);
}
3. Streaming with TOON
Use streaming for large responses.
const stream = await openai.chat.completions.create({
model: "gpt-4-turbo",
messages: [{
role: "user",
content: toonData
}],
stream: true
});
for await (const chunk of stream) {
process.stdout.write(chunk.choices[0]?.delta?.content || "");
}
4. Context Window Management
Fit more data in context with TOON.
GPT-4 Context: 128K tokens
With JSON: ~50 user profiles with full history With TOON: ~85 user profiles with full history (70% more!)
function packContextWindow(users, maxTokens = 120000) {
const toonUsers = users.map(u => toon.stringify(u));
let packed = [];
let tokenCount = 0;
for (const user of toonUsers) {
const tokens = toon.countTokens(user);
if (tokenCount + tokens <= maxTokens) {
packed.push(user);
tokenCount += tokens;
} else {
break;
}
}
return packed.join('\n---\n');
}
Cost Tracking and Monitoring
Track Your Savings
class TOONMetrics {
constructor() {
this.jsonTokens = 0;
this.toonTokens = 0;
}
recordConversion(jsonData) {
const jsonTokens = this.countTokens(JSON.stringify(jsonData));
const toonData = toon.stringify(jsonData);
const toonTokens = toon.countTokens(toonData);
this.jsonTokens += jsonTokens;
this.toonTokens += toonTokens;
return toonData;
}
getSavings() {
const reduction = (this.jsonTokens - this.toonTokens) / this.jsonTokens;
return {
jsonTokens: this.jsonTokens,
toonTokens: this.toonTokens,
reduction: (reduction * 100).toFixed(2) + '%',
savedTokens: this.jsonTokens - this.toonTokens
};
}
getCostSavings(costPerToken) {
const savedTokens = this.jsonTokens - this.toonTokens;
return (savedTokens * costPerToken).toFixed(2);
}
}
// Usage
const metrics = new TOONMetrics();
async function processData(data) {
const toonData = metrics.recordConversion(data);
return await callLLM(toonData);
}
// Check savings
console.log(metrics.getSavings());
// Output: { jsonTokens: 50000, toonTokens: 25000, reduction: '50.00%', savedTokens: 25000 }
console.log(`Saved $${metrics.getCostSavings(0.00001)} so far`);
// Output: Saved $0.25 so far
Migration Checklist
Week 1: Setup
- Install TOON library
- Identify high-volume API calls
- Set up conversion functions
- Create test environment
Week 2: Testing
- Convert test data to TOON
- Validate LLM responses
- Measure token reduction
- Compare costs
Week 3: Pilot
- Deploy to 10% of traffic
- Monitor for issues
- Track actual savings
- Gather feedback
Week 4: Rollout
- Increase to 50% traffic
- Full deployment
- Document savings
- Share results with team
Common Pitfalls and Solutions
Pitfall 1: Over-Converting
Problem: Converting simple strings to TOON Solution: Only convert structured data
// Don't do this
const name = "Alice";
const toonName = toon.stringify({name}); // Wasteful
// Do this
if (typeof data === 'object' && data !== null) {
return toon.stringify(data);
}
return data;
Pitfall 2: Ignoring System Prompts
Problem: LLM doesn't understand TOON format Solution: Add TOON explanation to system prompt
Pitfall 3: Not Measuring
Problem: Assuming savings without tracking Solution: Implement metrics tracking from day 1
Expected Results
By Scale
Small (< 10K requests/month):
- Token reduction: 35-45%
- Monthly savings: $50-200
- ROI timeline: 1-2 months
Medium (10K-100K requests/month):
- Token reduction: 40-55%
- Monthly savings: $500-3,000
- ROI timeline: 2-4 weeks
Large (> 100K requests/month):
- Token reduction: 45-60%
- Monthly savings: $5,000-50,000
- ROI timeline: 1-2 weeks
Conclusion
Implementing TOON for OpenAI and Claude APIs:
Benefits:
- ✅ 30-60% cost reduction
- ✅ Minimal code changes
- ✅ Better context window usage
- ✅ Faster processing
- ✅ Easy to measure ROI
Implementation:
- Add TOON library to your project
- Convert at LLM boundary
- Update system prompts
- Track and measure savings
- Scale gradually
ROI: Most applications see positive ROI within 2-4 weeks.
Start small, measure everything, and scale as you see savings. Your AI budget will thank you.
Ready to start saving? Download our implementation starter kit with code samples and best practices.